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Abstract. Feature Extraction is one of the most important steps in brain-computer interface 
(BCI) systems. In particular, the common spatial patterns (CSP) is one of the most 
successful solutions which has been widely used in MI-BCIs. However, studies have 
reported that the performance of CSP heavily depends on its channels configuration. To the 
best of our current knowledge, it is not available to obtain the active channels related to 
brain activities of stroke patients in advance. Hence, we usually set a relatively broad 
channels or try to select a subject-specific channels when applying CSP to stroke patients. 
In this paper, we present a novel approach which employs wavelet transform and boosting 
algorithm to improve accuracy and robustness of the conventional CSP. In our proposed 
approach, the channel configurations are initially divided into multiple preconditions. Then, 
the informative features of the predefined channels are obtained using the Wavelet 
Common Spatial Pattern (W-CSP) algorithm that provided high-temporal-spectral 
resolution. Eventually, we train weak classifiers on the obtained features and combine these 
weak classifiers to a weighted combinational model using boosting strategy. Extensive 
experiments have been performed on datasets from the famous BCI competition III and IV. 
The results demonstrate its superior performance. 

1. Introduction 

Brain-computer interface (BCI) systems aim at providing a direct communication pathway 
between human brain and external devices [1]. Among assort of brain diffused signals, 
electroencephalogram (EEG), which is recorded by non-invasive methods and has a low cost, is the 
most exploited brain signal in BCI studies. Among various methods developed for EEG signals, the 
common spatial pattern (CSP) has proven to be one of the most effective algorithms [2]. CSP which 
tries to find spatial filters that maximize the variance of one class, while minimizing the variance of 
the other class was first used to classify two classes of EEG signals [3]. However, CSP is known to 
be very sensitive to its operational channel configurations [4]. To the best of our current knowledge, 
it is not available to obtain the active channels related to brain activities of stroke patients in 

118

The 5th International Conference on Advanced Computer Science Applications and Technologies (ACSAT 2017)

Published by CSP © 2017 the Authors



 

advance. Hence, we usually set a relatively broad channels or try to select a subject-specific 
channels when applying CSP to stroke patients. 

To address this problem, several approaches have been proposed. Yang et al. [5] proposed a 
novel method to select the effective EEG channels based on the inconsistencies from multiple 
classifiers. Chin et al. [6] presented discriminative channel addition (DCA) approach and 
discriminative channel reduction (DCR) approach to select subject-specific discriminative channels 
by iteratively adding or removing channels based on the cross-validation classification accuracies. 
Moreover, several novel approaches, called, common spatio-spectral pattern (CSSP) [4], common 
sparse spectral spatial pattern (CSSSP) [7], filter bank common spatial pattern (FBCSP) [8] and 
common spatial-spectral boosting pattern (CSSBP) [9, 10] were proposed. These methods 
simultaneously optimize a spatial filter and a spectral filter to enhance discriminability rates of 
multichannel EEG. 

Although the results present an improvement of the mentioned approaches over CSP, it is still a 
challenging and open issue to extract optimal features of EEG signals. Since the non-stationary 
nature of EEG signal makes it impossible to extract robust time-domain feature from the original 
EEG, the joint highly time-frequency resolution obtained by wavelet transform yields a more 
reliable candidate for the extraction of potential features in EEG. In this paper, we present an 
adaptive wavelet common spatial boosting pattern (WCSBP) algorithm, which attempts to model 
the channel configurations as preconditions and utilize CSP to extract features on the wavelet 
domain instead of the original EEG signal. Our algorithm produces a set of the most contributed 
channels groups, which could be served as effective inputs of CSP. We evaluate the performance of 
our algorithm on datasets from the famous BCI competition III and IV. 

The reminder of this paper is organized as follows: A detailed formulation of WCSBP is 
presented in Section II. Section III briefly describes the experimental arrangement and data 
acquisition. Section IV details the comparison results among several state-of-the-art algorithms. A 
brief conclusion is drawn in section V. 

2. Proposed Approach 

In this section, we present a detailed description of the WCSBP algorithm including spatial 
channel selection, feature extraction using the WCSBP algorithm and classification using a 
combinational model. 

For the following development, we first introduce some notations and the key points of our 
proposed approach. We denote ܧ௧௥௔௜௡ ൌ ሼݔ௡, ௡ሽ௡ୀଵݕ

ே  as the training dataset and ܧ௡ as the nth sample 
with EEG signal matrix ݔ௡ and label ݕ௡. The purpose of WCSBP is that under a universal channel 
set ݑ composed of all possible channel subsets ݑ௞, we try to find a subset ݓ ⊂  which brings out a ݑ
combinational model ܨ  by combining all sub-model learned under condition ௞ܹሺ ௞ܹ ∈ ሻݓ  and 
optimize the classifier on the training data ܧ௧௥௔௜௡ [9, 10]. 

2.1. Common Spatial Pattern 

Our proposed approach is developed based on the classic CSP algorithm [11]. The CSP 
algorithm tries to optimally discriminate between two classes of EEG data based on simultaneous 
diagonalization of two covariance matrices [14]. Next, we give a brief description of CSP. As 
mentioned above, the training data of the nth trial are denoted as ܧ௡ ൌ ሼݔ௡,  ௡ is theݔ ௡ሽ, whereݕ
EEG signal matrix of size ݄݈ܿܽ݊݊݁ݏ ൈ ሺ݁݉݅ݐ ∗ ሻ݁ݐܽݎ݈݁݌݉ܽݏ  and ݕ௡, ௡ݕ ∈ ሼ1,2ሽ  is the 
corresponding label. We use ݔ௡భ and ݔ௡మ represent two classes preprocessed EEG matrix. 
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Firstly, the normalized spatial convariance of the EEG can be calculated by 

ܴ௡భ ൌ
௫೙భ௫೙భ

೅

௧௥௔௖௘൫௫೙భ௫೙భ
೅ ൯
,			ܴ௡మ ൌ

௫೙మ௫೙మ
೅

௧௥௔௖௘൫௫೙మ௫೙మ
೅ ൯

, where ்ݔ  is the transpose of ݔ and ݁ܿܽݎݐሺܣሻ represents 

the sum of the diagonal elements of ܣ . The averaged normalized convariance ܴ௡భതതതതത and ܴ௡మതതതതത are 
computed by averaging over all the trials of each group. The composite spatial convariance ܴ can 
be factorized as ܴ ൌ ܴ௡భതതതതത ൅ ܴ௡మതതതതത ൌ ܷ଴ܷߑ଴

் , where ܷ଴  is the matrix of eigenvectors and ߑ  is the 
diagonal matrix of eigenvalues. Hence, we can get the whitening transformation matrix P ൌ
Σିଵ ଶ⁄ ܷ଴

். Then, whiten the average convariance matrix as ܵ௡భ ൌ ܴܲ௡భതതതതത்ܲ,			ܵ௡మ ൌ ܴܲ௡మതതതതത்ܲ, where 
ܵ௡భ  and ܵ௡మ  share common eigenvectors and the sum of corresponding eigenvalues of the two 
matrices always be one. That is to say, the eigenvectors with the largest eigenvalues for ܵ௡భ have 
the smallest eigenvalues for ܵ௡మ and vice versa. To get the optimal solution for separating variance 
in two signal matrices, we just need to whiten the eigenvectors corresponding to the largest 
eigenvalues in ߑ௡భ and ߑ௡మ. The projection matrix ܹ is represented as ܹ ൌ ܷ௡௘௪் ܲ, where ܷ௡௘௪ is 
only composed of the eigenvectors corresponding to the largest ݉ଵ and the smallest ݉ଶ eigenvalues 
of ߑ௡భ. The rows of ܹ are the stationary spatial filters and the columns of ܹିଵ are common spatial 
patterns, which are considered as time-invariant EEG source distribution vectors. With the 
projection matrix ܹ ௡భݔ ,  and ݔ௡మ  can be transformed into uncorrelated components ܼ௡భ ൌ

ܼ௡మ			௡భݔܹ ൌ ௡మ. The feature vectors can be calculated by ௜݂ݔܹ ൌ ݃݋݈ ൬
௩௔௥ሺ௓೔ሻ

∑ ௩௔௥ሺ௓೔ሻ
೘
ೕసభ

൰, where ܼ௜  is 

the ith row of ܼ ሺܼ௜ሻݎܽݒ ,  is the variance of ܼ௜  and ݉ ൌ ݉ଵ ൅݉ଶ . The log transformation 
approximates the normal distribution of data. 

2.2.Wavelet-CSP 

The non-stationary nature of EEG signal makes it impossible extract robust time-domain feature 
from the original EEG. The joint highly time-frequency resolution, which cannot be achieved by 
either Fast Fourier Transform (FFT) or by Short Time Fourier Transform (STFT), obtained by 
wavelet transform yields a more reliable candidate for the extraction of potential features in EEG 
[15]. In the proposed approach, we employ the Mallat algorithm [16] to obtain the multi-resolution 
wavelet decomposition of EEG.  

After the wavelet decomposition, we directly perform CSP on the wavelet coefficients 
corresponding to ߤ rhythm and ߚ rhythm to extract features related to motor imagery. 

2.3. Channel Selection and Classification 

We use ܥ  to denote the channels group, then each possible channel subset ݑ௞  in ݑ 
satisfies|݇ݑ| ൑  here we denote |⋅| as the size of the corresponding set. Hence, what we are ;|ܥ|
supposed to do is to find an optimal channel subsets group ݓ	ሺݓ ⊂  ሻ, which serve as the trainingݑ
data of base weak classifiers. 

Given an random channel subset ௞ܹሺ݇ ൌ 1ሻ from the initial training data pool ଵܲ ൌ  ௧௥௔௜௡, weܧ
model them into different base weak classifiers. We select EEG data from the training dataset 
௧௥௔௜௡ܧ  according to ௞ܹ . Then, CSP is hired to extract features from the wavelet coefficients 
corresponding to ߤ  rhythm and ߚ  rhythm of the selected channels of ܧ௧௥௔௜௡  and a base weak 
classifiers ௞݂ሺܧ௧௥௔௜௡, ௞ܹሻ is trained on the extracted features. Through this method, we build a one-
to-one relationship between precondition ௞ܹ and its corresponding base weak classifier ௞݂ 
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ሼߙ,ܹሽଵ
௄ ൌ 	෍ܮ൭ݕ௡,෍ߙ௞ ௞݂ሺݔ௡, ௞ܹሻ

௄

௞ୀଵ

൱

௄

௡ୀଵ
ሼఈ,ௐሽభ

಼
௠௜௡  (1) 

 
To solve equation 1, we employ a greedy algorithm. Equation 1 can be rewritten as 

 

Fሺܧ௧௥௔௜௡, ሼߙ,ܹሽଵ
௄ሻ ൌ ෍ߙ௞ ௞݂ሺݔ௡, ௞ܹሻ

௄ିଵ

௞ୀଵ

൅ ௄ߙ ௄݂ሺݔ௡, ௄ܹሻ (2) 

 
Thus, we can get a simple recursive formula ܨ௄ሺܧ௧௥௔௜௡ሻ ൌ ௧௥௔௜௡ሻܧ௄ିଵሺܨ ൅ ௄ߙ ௄݂ሺܧ௧௥௔௜௡, ௄ܹሻ. 

Assuming that ܨ௄ିଵሺܧ௧௥௔௜௡ሻ has been determined, we can transform Equation 2 to 
 

௧௥௔௜௡ሻܧ௄ሺܨ ൌ ௧௥௔௜௡ሻܧ௄ିଵሺܨ ൅ arg 	෍ܮ൭ݕ௡,෍ߙ௞ ௞݂ሺݔ௡, ௞ܹሻ
௄

௞ୀଵ

൱

ே

௡ୀଵ
௙

௠௜௡  (3) 

 
Based on the strategy, each local optimal classifiers ܨ௞ሺ݇ ൌ 1,2,⋯ ,  ሻ splits the original trainingܭ

dataset ܧ௧௥௔௜௡ into two part ௧ܶ௥௨௘ ൌ ሼݔ௡, ௡ሽ௡:௬೙ୀிೖሺ௫೙ሻ and ௙ܶ௔௟௦௘ݕ ൌ ሼݔ௡,  ௡ሽ௡:௬೙ஷிೖሺ௫೙ሻ. To obtainݕ

the next channel subset, we select ൛ሺݔ௡, ,௡ݔ௡ሻ|ሺݕ ௡ሻݕ ∈ ௙ܶ௔௟௦௘ ∩ ௞ܲିଵൟ  as ܧ௠ୀଵ
ெ  and insert these 

ݐሺݐܯ ൐ 1ሻ duplicated signals into ௞ܲିଵ to generate a new training data pool ௞ܲ. Hence, we can get 
kth training data and train kth base weak classifier. Eventually, a combinational model will be 
achieved. 

3. Experimental Configurations 

3.1. Data Acquisition 

Dataset I was dataset IVa from BCI competition III which was recorded from five healthy 
subjects (labeled with 'aa', 'al', 'av', 'aw', 'ay' respectively) using BrainAmp amplifiers and a 128 
channel Ag/AgCl electrode cap from ECI [17]. Following 3.5 s visual cues, the subjects performed 
motor imagery tasks: (L) left hand, (R) right hand and (F) right foot; nevertheless, only 280 trials of 
classes right and foot for one subject were available to the competition. Only 118 EEG channels 
were measured at positions of the extended international 10/20-system. Then, the EEG signals were 
band-pass filtered between 0.5 and 200 Hz and down-sampled to 100 Hz. 

Dataset II was dataset IIa from BCI competition IV which was provided by C. Brunner, R. Leeb, 
G. R. Müller-Putz, G. Pfurtscheller, and A. Schlögl from Graz (Austria) and recorded from nine 
subjects (labeled with A01-A09 respectively) using 22 Ag/AgCl electrodes [11]. The dataset 
consisted 4 classes of motor imagery EEG measurements, namely, (L) left hand, (R) right hand, (F) 
feet and (T) tongue. Two sessions on different days, one for training and the other for evaluation, 
were recorded for each subject. Each session consisted of 6 runs separated by short break. One run 
was comprised of 48 trials, yielding a total of 288 trials per session. The signals were sampled with 
250 Hz and band-pass filtered between 0.5 Hz and 100 Hz. 

3.2. Data Processing 

We first utilize FastICA [18] to remove artifacts due to eye and muscle movements. Afterwards, 
the filtered EEG signals are analyzed using discrete wavelet transform (DWT). The coefficients 
corresponding to ߤ rhythm (8–13 Hz) and ߚ rhythm (14–30 Hz) are provided to the next stage. 
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selected time segment. Dataset II which is from the BCI Competition IV aimed at assessing the 
classification accuracy of all the methods based on the session-to-session transfer rate. We 
presented a continuous classification output for sessions 1–3 of each sample in the form of class 
labels (1, 2, 3, 4). 
 

Table 1 Experimental results for each subject in BCI competition IV Dataset IIa of CSP, CSSP, 
CSSSP, FBCSP, CSSBP and our proposed approach WCSBP 

Method CSP CSSP CSSSP FBCSP CSSBP WCSBP 
A01 0.644 0.665 0.667 0.729 0.735 0.729 
A02 0.423 0.453 0.458 0.475 0.486 0.487 
A03 0.797 0.812 0.820 0.824 0.819 0.825 
A04 0.365 0.374 0.373 0.484 0.501 0.495 
A05 0.215 0.256 0.253 0.451 0.453 0.461 
A06 0.280 0.325 0.329 0.347 0.351 0.361 
A07 0.626 0.645 0.641 0.812 0.798 0.815 
A08 0.774 0.783 0.786 0.807 0.787 0.811 
A09 0.719 0.731 0.735 0.755 0.753 0.757 

Mean 0.538 0.560 0.562 0.632 0.631 0.638 
 

Table1 presents the performance in terms of kappa values of all the approaches. Noting that the 
optimal wavelet basis and the optimal feature dimensionality of every approach were determined 
based on the training performance. Our algorithm shows superior performance over other 
approaches and obtains highest kappa value. With a closer look, we could observe that the proposed 
algorithm obtained greatly improvement even for the subjects with poor CSP accuracies, e.g., A05 
and A06. Due to the influence of different levels of noise, all the methods obtained significant 
difference classification accuracies for all the subjects. Hence, there are great potential for 
improvement for subject A05 compared to A03 and A08. 

5. Conclusions 

This paper proposed a method, called WCSBP, to improve the efficiency and robustness of the 
classic CSP by combining wavelet transform and boosting algorithm. In this proposed approach, we 
utilized a stochastic boosting strategy to select channel subsets and trained the base weak classifiers 
on the wavelet coefficients of the selected channels EEG data. The most discriminatory channel set 
groups related to brain activities were selected and could be treated as effective directives for CSP. 
Hence, we got an optimal combinational classifier by combining these base weak classifiers. The 
main advantage of WCSBP was that WCSBP directly performs the classic CSP algorithm on the 
wavelet coefficients, which produce more robust CSP projection matrix, instead of the original EEG, 
due to the highly time-frequency properties of wavelet transform. We compared the performance of 
our approach with the conventional CSP and other CSP-based algorithms on datasets from the 
famous BCI competition III and IV. The results demonstrated its superior classification accuracy 
and robustness. 
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